Study of hypocalcemia and its risk factors in post thyroidectomy among a sample of Iraqi patients

Ahmed Nafi Hassan*, Mohammed Hillu Surriah, Amine Mohammed Bakkour

Department of Surgery, Al-Karama Teaching Hospital, Baghdad, Iraq

Received: 07 December 2018
Accepted: 13 December 2018

*Correspondence:
Dr. Ahmed Nafe Hassan,
E-mail: nafieoman@hotmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Hypocalcemia is a well-recognized complication of thyroid surgery. The aim of this study was to determine the incidence of hypocalcemia after thyroid surgery and find out the risk factors involved regarding the patient age, gender, muscular build, clinical diagnosis, extent of surgery, ligation of the inferior thyroid artery, and pathology report.

Methods: This prospective study was carried out on 50 patients who underwent thyroid surgery for various thyroid diseases at the surgical department of Karama teaching hospital for the period between January 2016 to July 2016. Serial serum calcium measurements were recorded as well as details of the operation, patient age and gender, ligation of the inferior thyroid artery or not, pathological report. Hypocalcemia was considered transient if it was resolved within 6 months and permanent if it persisted after 6 months and the patient was maintained on supplementation therapy of calcium and vitamin D.

Results: Author found that the incidence of post-thyroidectomy hypocalcemia was 30% and in the majority of the cases (24%) was transient, while it was permanent in only (6%) of cases and had occurred mainly after total thyroidectomy and in cases with ligation of the inferior thyroid artery.

Conclusions: Author concluded that post thyroidectomy hypocalcemia is a relatively common complication but it is transient in the majority of the patients. Its incidence is related to the extent of the surgery and can be reduced by the good preparation of the patient preoperatively.

Keywords: Calcium therapy, Hypocalcemia, Thyroidectomy

INTRODUCTION

Theodore Kocher may be credited for refining the systems for thyroidectomy what's more diminishing that occurrence about post-operative discharge. He additionally perceived the vitality of protection for parathyroid organs.\(^1\) Post-operative hypocalcemia is a champion among the troubles for thyroidectomy, its recurrence will be a more prominent sum as a relatable point following total thyroidectomy over after other a more noteworthy sum preservationist thyroidectomy.\(^2\) The reported recurrence rate of transient hypocalcemia ranges from (1.6%-9.3%) following subtotal thyroidectomy likewise from (6.9%-42%) at that point a short time later out and out thyroidectomy. On differentiate, immutable hypocalcemia requires been accounted already, (0.2-3%) from guaranteeing patients after subtotal thyroidectomy moreover secured close by (0.4-29%) about patients following total thyroidectomy.\(^2\) It regularly shows itself in the essential 24hours post operatively on the other hand inside the 2-5days after task, nonetheless, greatly rarely those beginning might be put off 2-3weeks.\(^3\) Done most by far patients it is transient that decides precipitously likewise best couple patients make enduring hypocalcemia.\(^4\) Completed 80% for cases it decides in with respect to 12months.\(^5\)
peril about this obfuscating depends on the degree for medical procedure, the nature of the hidden disease and the information of the working authority. Moreover, specific careful issues require help experienced already, instances of dreary thyroid sickness, extensive goiter, anatomic varieties, retrosternal on the other hand without a doubt mediastinal zone what’s more damage of the parathyroid organs. Hypocalcemia is more incessant in broad thyroidectomy when contrasted with minor resections of the thyroid organ, in the ligation of the subpar thyroid supply route and has been identified with the specialist’s understanding.6 The body of a youthful grown-up human contains around 1100g (27.5 mol) of calcium. Ninety-nine percent of the calcium is in the skeleton. The serum calcium, regularly around 10mg/dL (5 meq/L-2.5 mmol/L) was halfway bound to protein and incompletely diffusible. Serum calcium is dispersed among three structures which is protein bound (40%), complexed to phosphate and different anions (10%) and ionized (half).7

Day by day calcium admission is 1-3 gm/day. The vast majority of this is discharged by means of the inside with urinary discharge moderately low. Add up to body calcium adjust is under complex hormonal control, yet aggravations in digestion are moderately long haul and less imperative in the intense careful setting. In any case, regard for the basic part of ionized calcium in neuromuscular capacity is required.8 The system and pathogenesis of hypocalcemia after thyroid medical procedure isn’t totally seen, in any case, it is ascribed to careful harm perpetrated on the parathyroid organs amid thyroidectomy or illustration, coordinate damage, devascularization, or accidental evacuation, vascular damage is likely more essential than unintentional expulsion.8

METHODS

This observational study was conducted on 50 patients operated for thyroid diseases in the surgical department of Al-Karama teaching hospital from January 2016 to July 2016. Patients, who had undergone total, near total or subtotal thyroidectomy by bilateral hormonal control were included in the study. The patient with concurrent lymph node dissection and pre-existing hypocalcemia were excluded. Preliminary work up included complete clinical examination, biochemical assay of hormone profile. Ultrasound imaging of the thyroid gland and neck in general was done routinely. Aspiration cytology was performed from all solitary nodules and nodules showing suspicious features on clinical examination or ultrasound imaging. Plain helical computerized tomography was done when clinical evidences of mediastinal extension were noted. Hyperthyroidism was controlled before operation. Vocal cords were assessed by indirect laryngoscopy prior to operation.

Operation was performed by members of surgical team noted under general anesthesia, good muscle relaxation and endotracheal tube. On the operating table, patients should be supine, and it must be tilted up (15°) at the end of head to lower venous engorgement. A gel pad is put transversely under the shoulder, and the neck to be extended to make the gland clearer and to provide tension to skin. A gently curved skin incision was done midway between the thyroid cartilage notch and the suprasternal notch. Flaps of skin, subcutaneous tissue and platysma were raised to the superior thyroid notch and down wards to the suprasternal notch. The sternothyroid muscle is mobilized off thyroid gland lobes with being careful to be near the muscle and outside capsule.

The lateral mobilization was done by the capsular dissection technique to identifying parathyroid glands and recurrent laryngeal nerves. Total, near total, or subtotal resection of each lobe was performed, absolute hemostasis can be maintained by vessels ligation and by thyroid remnants suture to the tracheal fascia. The cervical fascia and pre-tracheal muscles were sutured and the wound was closed. Randomized clinical trials have proven that routine drainage to deep cervical space is not necessary. Vocal cords were reassessed after extubation by direct laryngoscopy. Hypocalcemia was diagnosed when serum calcium level dropped below 8 mg/dcliliter. Patients with Transient hypocalcemia received oral calcium supplementation (1g three or four times/day).

Patients who developed neuromuscular symptoms received intravenous infusion of calcium gluconate, 10ml of 10% calcium gluconate (equivalent to 8.4mg or 2.3 mmol calcium) was administered (1mg elemental calcium/kilogram body weight/h). Serum calcium was estimated to screen for the parathyroid insufficiency at the first review (4-6weeks following surgery).3 Patients who developed complications were reviewed monthly for 12months or more. Hypocalcemia is defined as serum corrected calcium level below 8mg/dl. Permanent hypocalcemia is defined as persistent hypocalcemia after 6months of thyroidectomy.

RESULTS

A total of 50 patients aged from 20 to 70years underwent a thyroidectomy in the period between January 2016 to July 2016 at the surgical department of Al-Karama teaching hospital. 46 were females and 4 were males. Most of patients (70%) had simple multinodular goiter, (12%) had Grave's disease, (8%) had toxic nodular goiter, (6%) had thyroiditis, and (4%) had cancer (Table 1).

Table 1: Types of thyroid diseases.

<table>
<thead>
<tr>
<th>Thyroid disease</th>
<th>No. of patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multinodular goiter/s</td>
<td>35</td>
<td>70%</td>
</tr>
<tr>
<td>Grave's disease</td>
<td>6</td>
<td>12%</td>
</tr>
<tr>
<td>Toxic nodular goiter</td>
<td>4</td>
<td>8%</td>
</tr>
<tr>
<td>Thyroiditis</td>
<td>3</td>
<td>6%</td>
</tr>
<tr>
<td>Cancer</td>
<td>2</td>
<td>4%</td>
</tr>
</tbody>
</table>
Total thyroidectomy was performed for (10%) of patients, near total thyroidectomy for (22%) of patients and subtotal thyroidectomy for (68%) of patients.

As shown in the Table 2 among the 5 patients with Total Thyroidectomy, 4% was diagnosed as CA, 4% as Graves’ disease and 2% as toxic nodular goiter. While among those with Near total Thyroidectomy 10% was from MNG group and 2% with thyroiditis, 6% with Graves’ disease and 4% with toxic nodular goiter. Finally, for Subtotal Thyroidectomy, 60% had MNG, while 4% was having thyroïditis, 2% was diagnosed as grave’s disease and another 2% as toxic nodular goiter. Around (30%) of patients developed hypocalcaemia postoperatively; in (24%) of them it was transient and in (6%) was permanent. There was 1 of the 3 patients who developed permanent hypocalcaemia that had undergone total thyroidectomy and the other 1 had undergone near total thyroidectomy and the last patient had undergone subtotal thyroidectomy (Table 3).

<table>
<thead>
<tr>
<th>Type of surgery</th>
<th>Number of patients</th>
<th>MNG</th>
<th>CA</th>
<th>Thyroiditis</th>
<th>Grave’s</th>
<th>Toxic nodular goiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total thyroidectomy</td>
<td>5 (10%)</td>
<td>0</td>
<td>2 (4%)</td>
<td>0</td>
<td>2 (4%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Near total thyroidectomy</td>
<td>11 (22%)</td>
<td>5 (10%)</td>
<td>0</td>
<td>1 (2%)</td>
<td>3 (6%)</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>Subtotal thyroidectomy</td>
<td>34 (68%)</td>
<td>30 (60%)</td>
<td>0</td>
<td>2 (4%)</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>

Table 3: Distribution of patients according to type of surgery and hypocalcaemia.

<table>
<thead>
<tr>
<th>Type of surgery</th>
<th>Number of patients</th>
<th>Hypocalcaemia</th>
<th>Transient</th>
<th>Permanent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total thyroidectomy</td>
<td>5 (10%)</td>
<td>4 (8%)</td>
<td>3 (6%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Near total thyroidectomy</td>
<td>11 (22%)</td>
<td>5 (10%)</td>
<td>4 (8%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Subtotal thyroidectomy</td>
<td>34 (68%)</td>
<td>6 (12%)</td>
<td>5 (10%)</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>

All the patients with CA had post thyroidectomy hypocalcaemia while (66.66%) of patients with thyroiditis had hypocalcaemia, (33.33%) of those with Grave’s disease had hypocalcaemia, (50%) of those with toxic nodular goiter had hypocalcaemia and only (20%) of those with simple multi nodular goiter had hypocalcaemia. There were 11 patients out of the 12 (91.66%) who developed transient hypocalcaemia were females, and 2 patients out of the 3 (66.66) who developed permanent hypocalcaemia were females also (Figure 1).

Figure 1: Distribution of hypocalcaemia and gender.

While one patient out of 12 (8.3%) who develop transient hypocalcaemia were male and one patient out of the 3 (33.3%) who developed permanents Hypocalcaemia were male also. All of the patients who underwent total and near total thyroidectomy 16 patients had undergone bilateral ligation of the inferior thyroid artery, 10 patients of them (66.6%) had hypocalcaemia, while 15 patients out of the 34 who underwent subtotal thyroidectomy had undergone a unilateral ligation of the inferior thyroid artery, and only 5 of them (33.4%) had hypocalcaemia postoperatively. All the 4 patients who developed hypocalcaemia following total thyroidectomy were of normal or under normal muscular built, with only one patient out of the 5 who had hypocalcaemia following near total thyroidectomy was obese and of a short neck and one patients out of the 6 who had hypocalcaemia following subtotal thyroidectomy were obese and of a short neck also.

DISCUSSION

Postoperative hypocalcaemia is a relatively common complication of thyroid surgery and is known as a major cause of postoperative morbidity but most often it is a transient event that occurs after extensive thyroid surgery. The result of this study showed that the incidence of hypocalcaemia is 30% and it was transient in the majority of the cases. Regarding the age, most of the patients who had transient hypocalcaemia (33.3%) belong to the 31-40 years age group and most of the patients who had permanent hypocalcaemia (66.6%) belong to that age group also, which is nearly similar to (Chaudhary IA et al
Regarding the gender, most of the patients who had transient hypocalcemia (91.66%) were females, and most of the patients who had permanent hypocalcemia (66.66%) were females also, which is similar to Thomusch O et al study.¹

Regarding the type and extent of the surgical procedure, we found that the incidence of transient hypocalcaemia was 60% after total thyroidectomy while it was 36.3% after near total thyroidectomy and it was only 14.7% after subtotal thyroidectomy. The incidence of permanent hypocalcaemia was 20% after total thyroidectomy while it was 9% after near total thyroidectomy and only 2.9% after subtotal thyroidectomy. These figures are consistent with those reported in other studies Chaudhary IA et al, Nair et al, and Wingert DJ et al, that showed that the extent of resection and surgical technique has greater impact on the rate of post-thyroidectomy hypocalcaemia.¹,⁶,¹¹ Regarding the ligation of the inferior thyroid artery, author found that (66.6%) of the patients who underwent bilateral ligation of that artery had post-thyroidectomy hypocalcaemia while 33.4% of the patients who underwent a unilateral ligation of that artery had hypocalcaemia, so making that procedure as an important risk factor. This result was due to the inadvertent excision of parathyroid gland in total thyroidectomy and for interference blood supply of the parathyroid gland in case of method of truncal inferior thyroid a. ligation.²,¹²

Regarding the clinical and the pathological diagnosis, author found that all the patients with CA had post thyroidectomy hypocalcaemia, while 66.66% of patients with thyroiditis had hypocalcaemia and only (33.33 %) of those with Grave's disease had hypocalcaemia, and 50% of those with toxic nodular goiter had hypocalcaemia and only 20% of those with simple multi nodular goiter had hypocalcaemia. These findings are in agreement with other studies showed that the thyroid cancer is a risk factor for inadvertent parathyroid excision.⁹,¹⁰,¹⁴

This was due to the radical removal of thyroid tissue, excessive dissection and truncal ligation of inferior thyroid a. All these factors might lead to unintentional removal of parathyroid gland and subsequent hypocalcaemia.¹⁵,¹⁶ Regarding the muscular built of the patient, author found that only 13.3% of the patients who had post-thyroidectomy hypocalcaemia were obese and of a short neck, so making that parameter is not so significant.

CONCLUSION

It was concluded that post-thyroidectomy hypocalcaemia is relatively common phenomenon, especially after extensive thyroid surgery but it is transient in most of the cases. Its incidence is related to the extent of the surgical procedure especially if this was associated with ligation of the inferior thyroid artery and it can be only reduced using the correct surgical procedures.

Funding: No funding sources

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

