Surgical site infections in GI surgery: update on bacteriology, antibiotic resistance, and ERAS integration
DOI:
https://doi.org/10.18203/2349-2902.isj20253056Keywords:
Gastrointestinal surgery, Surgical site infection, Antimicrobial resistance, ERAS, SSI prevention, Multidrug-resistant organisms, BacteriologyAbstract
Surgical site infections (SSIs) remain one of the most significant complications following gastrointestinal (GI) surgery, contributing to increased morbidity, prolonged hospitalization, and heightened healthcare costs. Despite major strides in perioperative care, SSI rates in GI surgery still range between 10–30%, particularly in high-risk emergency settings. The microbial landscape of SSIs is shifting, driven by rising antimicrobial resistance and regional variability in bacteriology. Multidrug-resistant (MDR) organisms- especially extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA), and carbapenem-resistant Klebsiella pneumoniae- have emerged as formidable threats. Parallelly, enhanced recovery after surgery (ERAS) pathways are gaining traction as comprehensive perioperative bundles that reduce SSI incidence through patient optimization, minimally invasive approaches, targeted prophylaxis, and early mobilization. This review consolidates evidence from 2015-2025 to present a comprehensive overview of: (a) the evolving microbiology and antibiotic resistance trends in GI SSIs; (b) contemporary antimicrobial prophylaxis strategies and stewardship programs; (c) the impact of ERAS protocols in mitigating SSI risks; and (d) future directions including precision SSI prevention, AI-assisted risk stratification, and rapid diagnostics. Effective SSI prevention in GI surgery necessitates a multidisciplinary approach rooted in local bacteriology, rational antibiotic use, and evidence-based perioperative care. Integrating ERAS with antimicrobial stewardship and personalized risk models may herald a new era in surgical infection control.
Metrics
References
U. S. Centers for Disease Control and Prevention. Surgical Site Infection Event (SSI). CDC. 2025:1-44.
Gillespie BM, Harbeck E, Rattray M, Liang R, Walker R, Latimer S, Thalib L, et al. Worldwide incidence of surgical site infections in general surgical patients: A systematic review and meta-analysis of 488,594 patients. Int J Surg. 2021;95:106136. DOI: https://doi.org/10.1016/j.ijsu.2021.106136
Islam MS, Faizi SAM, Rahman M, Alam RJ, Hossain MJ, Miraj AK. The surgical site infection following gastrointestinal surgery: a study in Sir Salimullah medical college and Mitford hospital, Dhaka, Bangladesh. Int Surg J. 2005;12(4):487-93. DOI: https://doi.org/10.18203/2349-2902.isj20250803
Chadhary SM, Desai S, Pandya P. Assessment of surgical site infections and their risk factors in abdominal surgeries. Healthcare Bulletin. 2025;19(8):3113.
Mirnoto J, Irwan AM. Patient knowledge and participation in preventing surgical site infections: an integrative review. Gulhane Med J. 2025;67(2):58-66. DOI: https://doi.org/10.4274/gulhane.galenos.2025.00821
Bansal D, Singh RR., Ded KS, Aggarwal A, Puar GS, Shah AS. Bacteriological profile and antimicrobial susceptibility in surgical site infection in elective abdominal surgeries. Int Surg J. 2016;3(4):1879-82. DOI: https://doi.org/10.18203/2349-2902.isj20163559
Iskandar K, Sartelli M, Tabbal M. Highlighting the gaps in quantifying the economic burden of surgical site infections associated with antimicrobial-resistant bacteria. World J Emerg Surg. 2019; 14:50. DOI: https://doi.org/10.1186/s13017-019-0266-x
StatPearls. Postoperative Wound Infections. NCBI Bookshelf. 2025.
Mekhla, Borle FR. Determinants of superficial surgical site infections in abdominal surgeries at a Rural Teaching Hospital in Central India: A prospective study. J Family Med Prim Care. 2019;8(7):2258-63. DOI: https://doi.org/10.4103/jfmpc.jfmpc_419_19
Wondmeneh TG, Mohammed JA. The incidence of surgical site infection and its predictors among women delivered via cesarean sections in Ethiopia: a systematic review and meta-analysis. Front Med (Lausanne). 2024;11:1395158. DOI: https://doi.org/10.3389/fmed.2024.1395158
Kouzu K, Tsujimoto H, Shinji S. Effectiveness of advanced dressings in preventing surgical site infections compared to that of standard dressings in gastrointestinal surgery: A systematic review and meta-analysis for guideline revision by the Japanese Society for Surgical Infection. Ann Gastroenterol Surg. 2025;9(3):408-17. DOI: https://doi.org/10.1002/ags3.12909
Mohan N, Gnanasekar D, Ignatious A. Prevalence and Risk Factors of Surgical Site Infections in a Teaching Medical College in the Trichy District of India. Cureus. 2023;15(5):e39465. DOI: https://doi.org/10.7759/cureus.39465
Birgand G, Dhar P, Holmes A. The threat of antimicrobial resistance in surgical care: the surgeon's role and ownership of antimicrobial stewardship. Br J Surg. 2023;110(12):1567-69. DOI: https://doi.org/10.1093/bjs/znad302
McLean KA, Goel T, Lawday S, Riad A, Simoes J, Knight SR, Ghosh D, et al. Prognostic models for surgical-site infection in gastrointestinal surgery: systematic review. Br J Surg. 2023;110(11):1441-50. DOI: https://doi.org/10.1093/bjs/znad187
Calderwood MS, Anderson DJ, Bratzler DW, Dellinger EP, Garcia-Houchins S, Maragakis LL, et al. Strategies to prevent surgical site infections in acute-care hospitals: 2022 Update. Infect Control Hosp Epidemiol. 2023;44(5):695-720. DOI: https://doi.org/10.1017/ice.2023.67
Costabella F, Patel KB, Adepoju AV, Singh P, Attia Hussein Mahmoud H, Zafar A, et al. Healthcare Cost and Outcomes Associated With Surgical Site Infection and Patient Outcomes in Low- and Middle-Income Countries. Cureus. 2023;15(7):e42493. DOI: https://doi.org/10.7759/cureus.42493
Cheadle WG. Risk factors for surgical site infection. Surg Infect (Larchmt). 2006;7:S7-S11. DOI: https://doi.org/10.1089/sur.2006.7.s1-7
Wolfhagen N, Boldingh QJJ, Boermeester MA, de Jonge SW. Perioperative care bundles for the prevention of surgical-site infections: meta-analysis. Br J Surg. 2022;109(10):933-42. DOI: https://doi.org/10.1093/bjs/znac196
Rezaei AR, Zienkiewicz D, Rezaei AR. Surgical site infections: a comprehensive review. J Trauma Inj. 2025;38(2):71-81. DOI: https://doi.org/10.20408/jti.2025.0019
Kaur K, Oberoi L, Devi P. Bacteriological profile of surgical site infections. IAIM. 2017;4(12):7-83.
Allegranzi B, Bischoff P, de Jonge S, Kubilay NZ, Zayed B, Gomes SM, et al. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e276-7. DOI: https://doi.org/10.1016/S1473-3099(16)30398-X
Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections, FEMS Imm Med Microb. 2012;65(2):158-68. DOI: https://doi.org/10.1111/j.1574-695X.2012.00938.x
Bargavi T, Secunda R, Saravanan J, Satyanesan J. Surgical Site Infections in Gastrointestinal Surgeries: Estimation of Prevalence, Risk Factors and Bacteriological Profile. Cureus. 2024;16(6):e62589.
O'Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015;8:217-30. DOI: https://doi.org/10.2147/IDR.S54125
Bassetti M, Vena A, Giacobbe DR, Truchi C, Ansaldi F, Antonelli M, et al. Risk Factors for Intra-Abdominal Candidiasis in Intensive Care Units: Results from EUCANDICU Study. Infect Dis Ther. 2022;11(2):827-40. DOI: https://doi.org/10.1007/s40121-021-00585-6
Amrutham R, Reddy MMB, Pyadala N. A prospective study of surgical c in a teaching hospital. Int Surg J. 2016;4(1):237-41. DOI: https://doi.org/10.18203/2349-2902.isj20164448
Kalakouti E, Simillis C, Pellino G, Pughal N, Warren O, Mills S, et al. Characteristics of Surgical Site Infection Following Colorectal Surgery in a Tertiary Center: Extended-spectrum β-Lactamase-producing Bacteria Culprits in Disease. Wounds. 2017;30(4):108-13.
Menz BD, Charani E, Gordon DL, Leather AJM, Moonesinghe SR, Phillips CJ. Surgical Antibiotic Prophylaxis in an Era of Antibiotic Resistance: Common Resistant Bacteria and Wider Considerations for Practice. Infect Drug Resist. 2021;14:5235-52. DOI: https://doi.org/10.2147/IDR.S319780
O'Toole RF, Leong KWC, Cumming V, Van Hal SJ. Vancomycin-resistant Enterococcus faecium and the emergence of new sequence types associated with hospital infection. Res Microbiol. 2023;174(4):104046. DOI: https://doi.org/10.1016/j.resmic.2023.104046
Yoon YK, Yang KS, Kim J, Moon C, Lee MS, Hur J, et al. Clinical implications of multidrug-resistant microorganisms and fungi isolated from patients with intra-abdominal infections in the Republic of Korea: a multicenter study. Diagn Microbiol Infect Dis. 2021;100(3):114960. DOI: https://doi.org/10.1016/j.diagmicrobio.2019.114960
Sarang B, Tiwary A, Gadgil A, Roy N. Implementing antimicrobial stewardship to reduce surgical site infections: Experience and challenges from two tertiary-care hospitals in Mumbai, India. J Glob Antimicrob Resist. 2020;20:105-9. DOI: https://doi.org/10.1016/j.jgar.2019.08.001
Hrynyshyn A, Simões M, Borges A. Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics (Basel). 2022;11(1):69. DOI: https://doi.org/10.3390/antibiotics11010069
Ljungqvist O, Scott M, Fearon KC. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017;152(3):292-8. DOI: https://doi.org/10.1001/jamasurg.2016.4952
Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations: 2018. World J Surg. 2019;43(3):659-95. DOI: https://doi.org/10.1007/s00268-018-4844-y
Lohsiriwat V. Enhanced recovery after surgery vs conventional care in emergency colorectal surgery. World J Gastroenterol. 2014;20(38):13950-5. DOI: https://doi.org/10.3748/wjg.v20.i38.13950
Arrick L, Mayson K, Hong T, Warnock G. Enhanced recovery after surgery in colorectal surgery: Impact of protocol adherence on patient outcomes. J Clin Anesth. 2019;55:7-12. DOI: https://doi.org/10.1016/j.jclinane.2018.12.034
Lord AS, Nicholson J, Lewis A. Infection Prevention in the Neurointensive Care Unit: A Systematic Review. Neurocrit Care. 2019;31(1):196-210. DOI: https://doi.org/10.1007/s12028-018-0568-y
Dong F, Li Y, Jin W, Qiu Z. Effect of ERAS pathway nursing on postoperative rehabilitation of patients undergoing gastrointestinal surgery: a meta-analysis. BMC Surg. 2025;25(1):239. DOI: https://doi.org/10.1186/s12893-025-02976-9
Seidelman JL, Mantyh CR, Anderson DJ. Surgical Site Infection Prevention: A Review. JAMA. 2023;329(3):244-52. DOI: https://doi.org/10.1001/jama.2022.24075
Boggi U. Precision surgery. Updates Surg. 2023;75(1):3-5. DOI: https://doi.org/10.1007/s13304-022-01447-7
Edwards R, Charani E, Sevdalis N, Alexandrou B, Sibley E, Mullett D, et al. Optimisation of infection prevention and control in acute health care by use of behaviour change: a systematic review. Lancet Infect Dis. 2012;12(4):318-29. DOI: https://doi.org/10.1016/S1473-3099(11)70283-3
Abedon ST, García P, Mullany P, Aminov R. Editorial: Phage Therapy: Past, Present and Future. Front Microbiol. 2017;8:981. DOI: https://doi.org/10.3389/fmicb.2017.00981
Edmiston CE, McBain AJ, Roberts C, Leaper D. Clinical and microbiological aspects of biofilm-associated surgical site infections. Adv Exp Med Biol. 2015;830:47-67. DOI: https://doi.org/10.1007/978-3-319-11038-7_3
Mo Y. Rapid Diagnostics for Antibiotic Resistance: Urgent Need for Strong Clinical Evidence. Clin Infect Dis. 2022;75(12):2076-8. DOI: https://doi.org/10.1093/cid/ciac358
Monahan M, Jowett S, Pinkney T, Brocklehurst P, Morton DG, Abdali Z, et al. Surgical site infection and costs in low- and middle-income countries: A systematic review of the economic burden. PLoS One. 2020;15(6):e0232960. DOI: https://doi.org/10.1371/journal.pone.0232960