Original Research Article

Thrombolytic therapy as first line treatment in prosthetic mitral valve thrombosis

Sushrut Potwar, Ankur Kothari, Abhishek Potnis*, Malavika Paranjape

INTRODUCTION

The incidence of prosthetic valve thrombosis (PVT) during warfarin (coumadin) therapy is dependent on type of valves used, location of replacement and compliance to anticoagulation and averages 0.2% and 1.8%/patient-year, respectively.1 PVT has a high incidence of 13% in the first year and 20% for tricuspid prostheses.2,3 Patients may be asymptomatic or may present with acute dyspnoea, embolic events, congestive cardiac failure or cardiogenic shock.4 The most common cause of PVT is inadequate anticoagulant therapy.5 Recent studies have shown that thromboembolism is more in the mitral prosthetic valve position (mechanical or biological) than with one in the aortic position.1,6 Bileaflet valves have a lower incidence than the unileaflet, ball and cage or tilting disc mechanical prostheses.7 The objective of the present study was to observe the benefits of thrombolysis and identify suitable profile of patients benefiting most from the therapy.

METHODS

The study was retrospective in nature. A total of 50 patients were admitted at KEM Hospital, Mumbai for thrombosis of mechanical mitral valves between September 2016 to September 2022. Clinical presentation at time of diagnosis, fluoroscopy and transthoracic echocardiography (TTE) were mainstay in diagnosis. These patients were retrospectively analysed after institutional ethical approval as no prospective
intervention was planned. The statistical software used was SAS version 6.09 on the Unix platform. Considering observational nature of the study, no other computational software was required.

Inclusion criteria

Patients with thrombosis of mechanical mitral valves diagnosed with echocardiography and Doppler flow presenting with functional class 3 or 4 symptoms were considered for thrombolytic therapy in absence of any major contraindications.

Mitril mean diastolic transvalvular gradient >8 mmHg and inability to document movement of leaflets by TTE were considered indicative of thrombotic valve.

Exclusion criteria

Patients with active internal bleeding, history of haemorrhagic stroke, intracranial neoplasm, blood pressure > 200/120 mmHg and diabetic haemorrhagic retinopathy were considered absolute contraindications to thrombolytic therapy. Patients not willing to participate in the study were excluded.

Streptokinase (SK) was used as the thrombolytic agent. In patients with allergy or history of exposure to SK were given urokinase. SK was administered in a dose of 2,50,000 units bolus over 30 minutes, followed by infusion of 1,00,000 units/ hour over 48-72 hours depending on clinical and TTE data. Post SK infusion, unfractionated Heparin was started at a dose of 5000 IU every 6 hourly along with oral anticoagulants till target INR of 2.5-3 was achieved.

TTE was performed at onset of thrombolytic therapy and repeated every 4-6 hourly till evidence of movement of both leaflets or fall in transvalvular gradient >50%. Fluoroscopy was done post 24 hours after SK to confirm adequate leaflet movement.

Termination

Thrombolytic therapy was considered a failure when transvalvular gradient fell <50%, persistent leaflet movement abnormality or complication resulting in death of patient irrespective of valve function normalcy.

RESULTS

A total of 50 patients with a mean age of 34±14 years were included in the study, of which 22 were males (44%) and 28 were females (56%). Majority of the patients presented with signs and symptoms of heart failure. Of the 50 patients presenting with complaints of dyspnoea 27 (54%) were in NYHA 2, 19 (38%) were NYHA 3 and 4 (8%) patients were NYHA 4.

Mechanical valves were implanted in 47 patients (94%) and biological valves in 3 (6%) patients. Bileaflet valves were implanted in 43 (86%) and monoleaflet valves in 7 (14%) patients. Patient characteristics are given in Table 1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean±SD) years</td>
<td>34±14</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>22 (44)</td>
</tr>
<tr>
<td>Female</td>
<td>28 (56)</td>
</tr>
<tr>
<td>Duration of symptoms (weeks)</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td>43 (86)</td>
</tr>
<tr>
<td>>1</td>
<td>7 (14)</td>
</tr>
<tr>
<td>NYHA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>27 (54)</td>
</tr>
<tr>
<td>3</td>
<td>19 (38)</td>
</tr>
<tr>
<td>4</td>
<td>4 (8)</td>
</tr>
<tr>
<td>Valve</td>
<td></td>
</tr>
<tr>
<td>Biological</td>
<td>43 (86)</td>
</tr>
<tr>
<td>Mechanical</td>
<td>7 (14)</td>
</tr>
</tbody>
</table>

The average peak transvalvular gradient decreased from 30.5±8.9 before thrombolysis to 14.1±3.9 post thrombolysis and the mean transvalvular gradient fell from 18.9±7.1 to 8.5±3.1 as indicated in Table 2. Mechanical valves show more reduction in valvular gradients as compared to bioprosthetic valves as indicated by a steeper slope in Figure 1.

Table 1: Patient characteristics.

![Figure 1: Reduction in peak and mean transvalvular gradients.](image-url)

47 (94%) patients in the study group did not require any surgical intervention post thrombolysis and were free from major complications. 2 (4%) patients did not respond to thrombolysis and needed surgery for relief of symptoms. 1 (2%) patient developed major intracranial bleed during the treatment and died. 1 patient developed peripheral emboli (2%), 1 (2%) patient developed a transient neurological deficit and 2 (4%) patients had evidence of small subcutaneous hematomas as shown in Table 3.
Table 2: Difference in transvalvular pressure gradient before and after thrombolysis.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Before thrombolysis</th>
<th>After thrombolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average peak transvalvular gradient</td>
<td>30.5±8.9</td>
<td>14.1±3.9</td>
</tr>
<tr>
<td>Average mean transvalvular gradient</td>
<td>18.9±7.1</td>
<td>8.5±3</td>
</tr>
</tbody>
</table>

Table 3: Result of thrombolysis.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Result (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success of treatment</td>
<td>47 (94)</td>
</tr>
<tr>
<td>Surgery</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Complications</td>
<td>4 (8)</td>
</tr>
<tr>
<td>Death</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>

DISCUSSION

The traditional treatment for the management of PVT has been thrombectomy or valve replacement, however, high surgical mortality continues to remain a major limitation despite recent technological advancements and myocardial protection strategies. Patil et al and Gupta et al showed that mitral valve prosthesis was most commonly involved in the patients (71.5%) compared to aortic valve prosthesis (19.6%).

Diagnosis is often confirmed by fluoroscopy or echocardiography. Although TTE is used for calculation of gradient and response to thrombolytic therapy, definitive diagnosis is greatly aided by TEE, particularly three-dimensional echocardiography. Calculation of thrombus area by TEE is a predictor of embolic complications and this has now been incorporated in guidelines. Multidetector computed tomography is emerging as a diagnostic modality for differentiating between pannus and thrombus. PVT should always be given first consideration when patients present with acute symptoms, new murmur, signs of heart failure, diminished valve sounds, and thromboembolic events. Factors favouring surgery include the availability of surgical know-how, calculation of surgical risk, recurrent thrombus, NYHA class IV heart failure, possible pannus, and coronary artery disease requiring adequate surgery. While factors that favour thrombolysis include lack of available surgical expertise, high surgical risk, first-time thrombosis, NYHA class ≥III heart failure, no coronary artery disease, and no pannus formation. Intravenous heparin is recommended in each case with thrombolytic therapy if valve thrombus persists.

Limitations

The study lacks a comparative analysis of thrombolysis and surgery. It may also be beneficial to have a follow up of the study participants with respect to late procedural complications, long term survival, recurrence of thrombosis and conversion to surgery. However, the authors plan to progress the study to overcome these limitations.

CONCLUSION

Prosthetic valve thrombosis is one of the most common complication following a valve replacement surgery. The patients presenting in a catastrophic manner may not be able to tolerate the complications associated with a redo surgery and hence trial of thrombolysis proves to be of utmost importance. Not only does thrombolysis prove to be better in economic aspects, but also may act as a bridging therapy towards redo surgery for valve thrombosis. Patients presenting with acute thrombosis in a mechanical bileaflet valve show better results with thrombolysis as described in our study. During thrombolysis proper vigilance is warranted as patients may develop complications like intracranial bleed, transient neurodeficit, subcutaneous hematoma.

Recommendations

TEE is a must in suspected prosthetic valve thrombosis to judge thrombus size and valve motion. Fibrinolytic therapy can be considered in a thrombosed left-sided prosthetic heart valve, which is of recent onset (<14 days) with class 1-2 symptoms, and a small thrombus (<0.8 cm²) on TEE. It is also acceptable for right sided valves. For all these a period of IV heparin is also recommended. Emergency surgery is recommended for a thrombosed left-sided prosthetic heart valve with class III–IV symptoms. Surgery is also recommended with a large thrombus (>0.8 cm²) (18). PHVT may be suspected if the Doppler-derived gradients are twice as high as empirically found in normal prostheses. For mitral prostheses, a mean gradient >6 mmHg and an effective area <1.3 cm² is suggestive of PHVT and >8 mmHg is indicative of PHVT. Castilho et al conducted a meta-analysis which included all studies comparing thrombolysis and surgery found that mortality was significantly lower in thrombolysis arm than surgery arm (6.6% versus 18.1%). Retrospective international registry including 107 patients with prosthetic heart valve thrombosis found an association between thrombus area >0.8 cm² and thrombolytic therapy failure or adverse events. The European Society of Cardiology guidelines also emphasize surgery for critically ill patients and restrict thrombolysis to patients with high surgical risk and/or right-sided valve thrombosis. In the most recent European and American guidelines, surgery is recommended for patients in NYHA functional classes III and IV unless surgery is high risk (class IIa). Thrombolysis is given a IIA indication in patients with right sided valve thrombosis and a class IIB indication in patients with a left-sided but small thrombus.

SK and UK have been the most used fibrinolytic agents. Patients with known allergy to SK or those who have been
exposed previously to SK should be given UK. The recommended dosage of SK is a 250,000-U bolus given in 30 min, followed by an infusion of 100,000 U/h. UK is given as in pulmonary embolism: 4,400 U/kg per hour.

ACKNOWLEDGEMENTS

Authors would like to thank all the patients who willingly participated in the study and the concerned hospital for support in implementing a multidepartment approach.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

