Case Report

DOI: https://dx.doi.org/10.18203/2349-2902.isj20221159

Superior mesenteric artery aneurysm: treatment with endovascular techniques: case report

Oriana Nogueira^{1*}, Mariana Duque¹, Catarina Lopes¹, Marta Silva¹, João Louro², Miguel Fernandes^{1,3}, José G. Tralhão^{1,3}

Received: 14 September 2021 Accepted: 30 March 2022

*Correspondence: Dr. Oriana Nogueira,

E-mail: oriana.nog83@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Superior mesenteric artery aneurysms (SMAA) are rare and associated with a high risk of rupture, morbidity and mortality. Their clinical presentation is heterogeneous, turning the clinical diagnosis into a difficult task-which can delay their treatment. We present a case of a patient with a SMAA, treated successfully with coil embolization.

Keywords: Visceral artery aneurysm, Superior mesenteric artery, Endovascular techniques

INTRODUCTION

Visceral artery aneurysms (VAA) are rare clinical entities, with an approximate incidence of 0, 01%-2%; with the increasing use of computed tomographic (CT) scans, their incidence has been rising. 1-4 Superior mesenteric artery aneurism (SMAA) is the third most frequent VAA (5, 5%), falling behind splenic and hepatic aneurysms (60 to 70 % and 20%, respectively).^{4,5}

We report a case of a 30-year-old woman, who was admitted to our hospital with acute abdominal pain. SMAA was diagnosed and the patient underwent successful elective endovascular treatment with coil embolization.

CASE REPORT

A 30-year-old obese woman submitted to bariatric surgery 15 days before presented to the emergency room complaining of abdominal pain for 12 hours.

The pain had a sudden onset, with no fluctuation in intensity, located in the epigastrium and right hypocondrium and with no relieving factors. Physical

examination showed a tender superior abdomen at deep palpation, with no signs of peritonism. She was hemodynamically stable, with no fever. Laboratory tests were unremarkable (without leukocytosis or neutrophilia and negative C-reactive protein).

Abdominal ultrasound showed a 2 cm rounded anechogenic formation, adjacent to the superior mesenteric artery, with internal flow present on a Doppler study, raising the suspicion of an aneurysmal dilatation.

An abdominal angio-CT scan confirmed an aneurysm in the dependence of the superior mesenteric artery's emergence, with about 2×1.8 cm (Figure 1).

We choose an elective endovascular approach and, after 15 days of the initial diagnosis, aneurysm embolization was performed with 14×34 mm microcoils, using right femoral access. Post-embolization angiogram showed no endoleak, with good flow in SMA and its distal branches (Figure 2).

The post-operative period ran smoothly and on a followup appointment (3 months later) the patient was asymptomatic.

¹Department of General Surgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal

²Department of General Surgery, Hospital Dr. Nélio Mendonça, Funchal-Madeira, Portugal

³Faculty of Medicine, University of Coimbra, Coimbra, Portugal

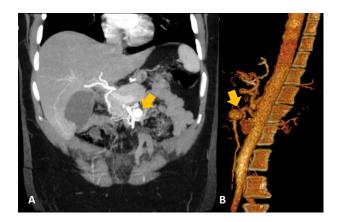


Figure 1: Angio CT revealing SMAA (arrows)
(A) coronal view; and (B) sagittal view.

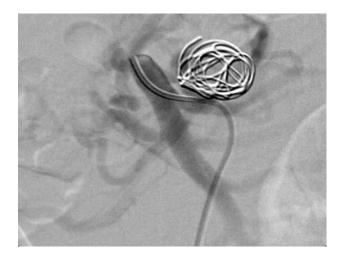


Figure 2: Post-embolization angiography revealing an aneurysm filled with coils, with flow in the SMA and distal branches.

DISCUSSION

SMAAs are rare but potentially life-threatening entities with high risk of rupture, morbidity and mortality. 6-8 Most commonly they involve the proximal 5 cm of the SMA.9 Men and women are affected equally. 4 In the past, bacterial infection emerged as the main cause due to septic emboli (e.g., endocarditis). 4,10-12 Currently, infectious SMAAs are found less often, mainly to the widespread antibiotic usage. According to Stone's study 4, less than 5% of the SMAs are of infectious etiology. Recent studies reported that most SMAA have unknown etiology, with atherosclerosis being the most common known cause, especially in the elderly; other authors consider that atherosclerosis most likely represents a secondary event. 4,13-16 Other more rare etiologies include polyarthritis nodosa, Behçet syndrome, systemic lupus erythematosus, systemic connective tissue disorders, vasculitis, trauma, cystic medial necrosis and neurofibromatosis. 4,17,18

In the presented case there seems to be no obvious identifiable etiology-the patient's only risk factor was obesity, which relates to atherosclerosis; however, we

don't believe it to be the most likely cause in a young patient.

The previous bariatric procedure could be the cause, but there are no cases in the medical literature that co-relate bariatric surgery with SMAA. Other causes, such as vasculitis or collagen disorders, are left unexplored, since the patient didn't have any signs or symptoms that required further investigation. Therefore, we believe a congenital cause is most likely, even though we cannot determine that for sure.

SMAAs are difficult to detect through physical examination and clinical history is usually nonspecific, which can lead to a delay/error in diagnosis. Increasingly, aneurysms have been diagnosed in asymptomatic patients, identified as incidental findings on abdominal imaging tests (particularly on CT or angio-CT scans performed for other reasons). 9,19-21 Stone et al and Jiang et al report that reality in 48% and 70% of asymptomatic patients, respectively. 4,13 The clinical presentation can be heterogeneous, but abdominal pain remains the most common symptom. It may arise associated with nausea, vomiting, a pulsatile mass or gastrointestinal bleeding. Other patients present with hemodynamic instability (secondary to aneurysmatic rupture) or with ischemic symptoms.¹⁴ The potential for rupture remains poorly defined and its frequency is not consistent in the various studies; however, if rupture occurs, the mortality rate may reach 60%.4,14,22

Due to the rarity of SMAA and absence of controlled studies, there is no strong enough evidence to establish guidelines. Therefore, management is based solely on observational studies. However, the treatment is usually indicated for symptomatic SMAA or asymptomatic SMAA with a diameter >2 cm/ rapid growing (more than 0.5 cm/year). Horvention strategies include surgery (open or laparoscopic), endovascular techniques or any combination of these modalities. MAA treatment should be individualized and based on the characteristics of the patient (age, gender, symptoms and comorbidities) and of the aneurysm (size, etiology). 17.28

In 1953, De Bakey and Cooley reported the first successful surgical treatment of SMAA, which consisted of aneurysm resection without revascularization.²⁹ Open surgery continues to be considered the "gold standard" for SMAAs 18, but the endovascular treatment has significantly gained importance with success rates between 70-97%.^{2,4,19,31-33}

Compared to open surgery, endovascular therapies are associated with lower morbidity and mortality, shorter hospital stay and a better perioperative quality of life; late complications may arise, namely thrombosis and infection.^{34,35} These techniques are particularly useful in patients with severe abdominal adhesions from prior laparotomies, high surgical risk, or for aneurysms in locations that are difficult to approach surgically.^{10,30,36}

CONCLUSION

SMAA, though rare, are life-threatening conditions that require an early diagnosis, especially if symptomatic, rapidly growing and/or big (>2 cm). Open surgical repair is considered "gold standard" treatment; however, endovascular techniques have been growing as valid alternatives, with elevated success rates being described in the literature. Nonetheless, further studies are required to demonstrate long-term results.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Fankhauser G, Stone W, Naidu S, Oderich G, Ricotta J. The minimally invasive management of visceral artery aneurysms and pseudoaneurysms. J Vasc Surg. 2011;53:966-70.
- Tulsyan N, Kashyap V, Greenberg R, Sarac T, Clair D. The endovascular management of visceral artery aneurysms and pseudoaneurysms. J. Vasc Surg. 2007;45:276-83.
- 3. Choi C, Rha S, Suh S, Kim F, Park G. Role of three-dimensional multidetector computed tomography for a huge superior mesenteric artery aneurysm management. Int J Cardio. 2008;127:12-5.
- 4. Stone W, Abbas M, Cherry K, Fowl R, Gloviczki P. Superior mesenteric artery aneurysms: Is presence an indication for intervention? J Vasc Surg. 2002:36:234-7.
- 5. Dasari B, Mullan M, Lau L, Loan W, Lee B. A 6.5-cm pseudoaneurysm of the superior mesenteric artery managed by primary. Vascular. 2013;21:39-42.
- Ferrero E, Viazzo A, Ferri M, Robaldo A, Piazza S. Management and urgent repair of ruptured visceral artery aneurysms. Ann Vasc Surg. 2011;25:981.e7-981.
- 7. Etezadi V, Gandhi R, Benenati J, Rochon P, Gordon M. Endovascular treatment of visceral and renal artery aneurysms. J Vasc Interv Radiol. 2011;22:1246-53.
- 8. Schweigert M, Adamus R, Stadluber R, Stein H. Endovascular stent--graft repair of a symptomatic superior mesenteric artery aneurysm. Ann Vasc Surg. 2011;25:841-5.
- 9. Pilleul F, Beuf O. Diagnosis of splanchnic artery aneurysms and pseudoaneurysms, with special reference to contrast enhanced 3D magnetic resonance angiography: a review. Acta Radiol. 2004;45:702-8.
- 10. Pasha S, Gloviczki P, Stanson A, Kamath P. Splanchnic artery aneurysms. Mayo Clin Proc. 2007;82:472-9.
- 11. Carr S, Pearce W, Vogelzang R, McCarthy W, Nemcek A. Current management of visceral artery aneurysms. Surgery. 1996;120:627-33.

- 12. Shanley C, Shah N, Messina L. Common splanchnic artery aneurysms: splenic, hepatic, and celiac. Ann Vasc Surg. 1996;10:315-22.
- 13. Jiang J, Ding X, Su Q, Zhang G, Wang Q. Therapeutic management of superior mesenteric artery aneurysms. J Vasc Surg. 2011;53:1619-24.
- 14. Kopatsis A, D'Anna J, Sithian N, Sabido F. Superior mesenteric artery aneurysm: 45 years later. Am Surg. 1998;64:263-6.
- 15. Javid P, Belkin M, Chew D. Mycotic aneurysm of the superior mesenteric artery: delayed complication from a neglected septic embolus. Vasc Endovascular Surg. 2005;39:113-6.
- Dorigo W, Pulli R, Inncocenti A, Anichini C, Azas L. Isolated inflammatory aneurysm of superior mesenteric artery: unexpected pathologic diagnosis. J Vasc Surg. 2004;39:903-5.
- 17. Lorelli D, Cambria R, Seabrook G, Towne J. Diagnosis and management of aneurysms involving the superior mesenteric artery and its branches—a report of four cases. Vasc Endovascular Surg. 2003;37:59-66.
- 18. Komori K, Mori E, Yamaoka T, Ohta S, Takeuchi K, et al. Successful resection of superior mesenteric artery aneurysm. A case report and review of the literature. J Cardiovasc Surg. 2000;41:475-8.
- 19. Saltzberg S, Maldonado T, Lamparello P, Cayne N, Nalbandian M, et al. Is endovascular therapy the preferred treatment for all visceral artery aneurysms? Ann Vasc Surg. 2005;19:507-15.
- 20. Hong Z, Chen F, Yang J, Wu Z, Yan Z. Diagnosis and treatment of splanchnic artery aneurysms: a report of 57 cases. Chin Med J. 1999;112:29-33.
- 21. Messina L, Shanley C. Visceral artery aneurysms. Surg Clin North Am. 1997;77:425-42.
- 22. Tolga Muftuoglu M, Aktekin A, Gurleyik G, Saglam A. A ruptured aneurysm of superior mesenteric artery to duodenum and reconstruction with saphenous vein graph. Eur J Vasc Endovasc Surg. 2003;5:590-1.
- 23. Van Petersen A, Meerwaldt R, Geelkerken R, Zeebregts C. Surgical options for the management of visceral artery aneurysms. J Cardiovasc Surg (Torino). 2011;52:333-43.
- 24. Pulli R, Dorigo W, Troisi N, Pratesi G, Alessi. Surgical treatment of visceral artery aneurysms: A 25-year experience. J Vasc Surg. 2008;48:334-42.
- 25. Marone E, Mascia D, Kahlberg, Brioschi C, Tsomba Y, et al. Is open repair still the gold standard in visceral artery aneurysm management? Ann Vasc Surg. 2011;25:936-46.
- 26. Abbas M, Stone W, Fowl R, Gloviczki, Oldenburg W, et al. Splenic artery aneurysms: two decades experience at Mayo clinic. Ann Vasc Surg. 2002;16:442-9.
- 27. Gehlen J, Heeren P, Verhagen P, Peppelenbosch A. Visceral artery aneurysms. Vasc Endovascular Surg. 2011;45:681-7.
- 28. Zilun L, Henghui Y, Yang Z, Mian W, Guanggi C. The Management of Superior Mesenteric Artery

- Aneurysm: Experience with 16 Cases in a Single Center. Ann Vasc Surg. 2017;42:120-7.
- 29. De Bakey M, Cooley D. Successful resection of mycotic aneurysm of superior mesenteric artery; case report and review of literature. Am Surg. 1953;19:202-12.
- 30. Jimenez J, Lawrence P, Reil T. Endovascular exclusion of superior mesenteric artery pseudoaneurysms: an alternative to open laparotomy in high risk patients. Vasc Endovascular Surg. 2008;42:184-6.
- 31. Carroccio A, Jacobs T, Faries P, Carroccio A. Endovascular treatment of visceral artery aneurysms. Vasc Endovascular Surg. 2007;41:373-82.
- 32. Venturini M, Marra P, Colombo M, Panzeri M, Gusmini S. Endovascular Repair of 40 Visceral Artery Aneurysms and Pseudoaneurysms with the Viabahn Stent-Graft: Technical Aspects, Clinical Outcome and Mid-Term Patency. Cardiovasc Intervent Radio. 2018;41:385-97.
- 33. Sachdev U, Baril D, Ellozy S, Lookstein R, Silverberg D. Management of aneurysms involving branches of the celiac and superior mesenteric arteries: a

- comparison of surgical and endovascular therapy. J Vasc Surg. 2006;44:718-24.
- 34. Ruiz-Tovar J, Martínez-Molina E, Morales V, Sanjuanbenito A, Lobo E. Evolution of the therapeutic approach of visceral artery aneurysms. Scand J Surg. 2007;96:308-13.
- 35. Prinssen M, Verhoeven E, Buth J, Cuypers P, Sambeek M. A randomized trial comparing conventional and endovascular repair of abdominal aortic aneurysms. N Engl J Med. 2004;351:1607-18.
- 36. Gabelmann A, Gorich J, Merkle E. Endovascular treatment of visceral artery aneurysms. J Endovasc Ther. 2002;9:38-47.
- 37. Kanazawa S, Inada H, Murakami T, Masaki H, Morita A. The diagnosis and management of splanchnic artery aneurysms. Report of 8 cases. J Cardiovasc Surg (Torino). 1997;38:479-85.

Cite this article as: Nogueira O, Duque M, Lopes C, Silva M, Louro J, Fernandes M et al. Superior mesenteric artery aneurysm: treatment with endovascular techniques: case report. Int Surg J 2022;9:1079-82.