Original Research Article

DOI: http://dx.doi.org/10.18203/2349-2902.isj20193344

Role of hyperoxygenation on surgical site wound infection: a randomised case control study

Samba Siva Rao G.¹, Kiran Kumar Suggala²*

¹Department of General Surgery, ²Department of Anaesthesia, Mamata Medical College, Khammam, Telangana, India

Received: 13 May 2019 Accepted: 18 June 2019

*Correspondence:

Dr. Kiran Kumar Suggala,

E-mail: dr.sk.mmckmm@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: The aim of this study was to assess the influence of hyperoxygenation on surgical site wound infections.

Methods: Using prospective randomized study, conducted from January 2018 to December 2018 at Mamata Medical College and General hospital, Khammam. This study includes 100 patients who were going for elective surgery at various divisions of Department of surgery. Patients were assigned randomly to an oxygen/air mixture with a faction of inspiration (FiO2) of 30% (n=50) and 60% (n=50). Administration was started after induction of anaesthesia and maintained for 3hours after surgery.

Results: Surgical site infection was recorded in 5 patients (2 of 50, 10%) in the hyperoxygenation group and 11 patients (11 of 50, 22%) in the control group (p<0.05). Time of hospitalization was 5 ± 3 days in the hyperoxygenation group and 9 ± 4 days in the control group (p<0.05).

Conclusions: Hyperoxygenation was associated with a reduction in surgical site infection. It also decreases the duration of hospital stay and decreases economic burden.

Keywords: Elective surgery, Hospital stay, Hyperoxygenation, Surgical site infection

INTRODUCTION

Surgical site infections (SSI) are the third most frequently reported nosocomial infections and comprise one third of total infections in surgical patients.¹

Several interventions have been investigated as part of an evidence-based approach to reducing surgical site infections: the use, timing, route and dosing of prophylactic antibiotics; the use of WBC-depleted RBC transfusions; the avoidance of hair shaving; the prevention of intraoperative hypothermia; and the use of mechanical bowel preparation. Despite these measures, significant clinical and economic burden of SSIs persists.²⁻⁶

Oxygen is routinely supplemented at 30% concentrations perioperatively. Supplementing higher concentrations of oxygen in the perioperative period for at least 2 h is one of the methods suggested to overcome perioperative hypoxia. This is vital for healing and critical for prevention of infections by releasing reactive oxygen species.^{7,8}

METHODS

The clinical study was conducted on 100 patients at the Mamata General Hospital, Khammam, Telangana state, India during the period January 2018 to December 2018 by obtaining approval from institutional ethical committee. Adult patients scheduled for elective

surgeries for class I (clean) and class II (clean contaminated) elective general surgeries were taken into the study. After a thorough clinical examination and relevant laboratory investigations of all patients, an informed, valid, written consent was obtained, both for conduct of study as well as administration of spinal anaesthesia. An equal number of patients were classified into 2 groups as the study and control groups (50 each). Both groups were similar in their demographic profiles.

Necessary pre-operative investigations were performed and operated upon. All the patients received a single dose of prophylactic antibiotic, third-generation cephalosporin (ceftriaxone), and a second dose was given whenever surgery extended beyond 2 hours.

Duration of the surgical procedures ranged from 15 min in minor procedures to 3 hours maximum in radical procedures. Major, medium and minor cases were distributed equally to both the groups. Patients with diabetes mellitus, immunosuppression, chronic renal and respiratory diseases and who received chemotherapy or steroids were excluded from the study.

Wound characteristics were evaluated at each visit according to the ASEPSIS wound scoring system. a wound scoring method, ASEPSIS, make assessment of wound sepsis more objective and reproducible by allotting points both for the appearance of the wound in the first week and for the clinical consequences of infection. ASEPSIS scores were between 0 and 70, and a score above 20 was considered to indicate wound infection.

Attending surgeons made hospital discharge decisions. Discharge timing was based on routine surgical considerations, including return of bowel function, control of infections (if any), adequate healing of the incision, and overall recovery during the postoperative period.

After discharge from the hospital, all patients were seen weekly in the clinic by a surgeon not involved in the study for 1 month following discharge from the hospital. The data collected were tabulated and analyzed by using the statistical package for social sciences, Windowsbased version 18.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

This prospective study was conducted at department of surgery, Mamata medical college. A total of 100 patients were included in the study. Table 1 depicts that different surgeries conducted to patients who underwent clean surgeries. These patients were aged from 15 years to 80 years. Age wise distribution of patients was shown in Table 2. Mean age of patients in hyperoxygenation group was 34.5±15.36 years and 38.2±17.89 years. Different patient characters were shown in table 3. In study group there were 27 males and 23 females. In control group there were 30 males and 20 females. Different patient characters were shown in Table 3. There was no significant difference between the study group and control group regarding age, sex, mean arterial pressure and haemoglobin levels.

Table 1: Type of surgeries.

Types of surgery	Study group (n=50)	Control group (n=50)
Hernia	7	8
Thyroidectomies	6	5
Mastectomy	4	6
Cholecystectomy	6	4
Appendectomies	8	7
Anal fissure	4	5
Hemorrhoidectomy	6	5
Hemicolectomy	2	3
Fibroadenoma	5	6
Dermoid cyst	2	1

Table 2: Age wise distribution of patients.

Age (in years)	Study group (n=50)	Control group (n=50)
>20	4	2
21-30	15	13
31-40	12	15
41-50	4	6
51-60	5	6
61-70	4	4
71-80	6	4

Table 3: Characteristics of patients.

Character	Study group (n=50)	Control group (n=50)
Age (year)	34.5±15.36	38.2±17.89
BMI	25.9±1.02	26.9±1.65
Sex M/F	27/23	30/20
Mean arterial pressure (mm of Hg)	62.35±9.23	64.23±10.26
Mean haemoglobin (g%)	10.6 ±3.2	10.8±2.6

There are eight patients in the hyperoxygenation group were suffered with SSI with less asepsis score compared to control group in which 15 members were infected with moderate asepsis score which is significant. Postoperative hospitalization was significantly decreased in the

hyperoxygenation group. SSI parameters in both groups were shown in Table 4.

Table 4: SSI in two groups.

Character	Study group (n=50)	Control group (n=50)
Surgical site infection (number)	05	11
Asepsis score	15±5	20±5
Postop hospitalization	5±3	9±4
Intraoperative o ₂ saturation	98.6	98.2
Postop o ₂ saturation	97.5	97.4

DISCUSSION

Surgical site infection (SSI) is one of the most common postoperative complications and is estimated to account for up to 29% of all hospital infections. ¹⁰ An SSI is defined as an infection of a surgical site and leads to prolong hospital admission and increase morbidity and mortality. Therefore, SSIs increase the cost of treatment. ^{11,12}

The wound healing process involves numerous functions, many of which depend on the presence of oxygen. Collagen production and development influence the strength of the wound which is directly correlated with the partial pressure of oxygen (PO₂) of the tissue. Synthesis of collagen, crosslinking and the resulting wound strength depend on the normal function of specific enzymes. The functions of these enzymes are directly related to the amount of oxygen present e.g. hydroxylation of proline and lysine by hydroxylase enzymes. ¹³

The production of epithelial tissue depends primarily on the degree of hydration and oxygen. Although a moist environment increases wound the rate epithelialization. 13,14 Hyperbaric oxygen treatment increases the proliferation of the fibroblasts and the differentiation and epidermopoiesis the keratinocytes.15

Increasing FIO₂ to improve blood oxygen content and subsequent oxygen delivery to tissues is a plausible mechanism to mitigate SSI and is part of the basis of hyperbaric oxygen therapy use for patients with chronic wounds. ¹⁶ Resistance to infection may depend on the partial pressure of oxygen in the wound tissue, and the ability to resist infection may be improved by increasing arterial oxygen tension beyond that required to saturate hemoglobin. ¹⁷

Belda and others in their study showed that SSI occurred in 24.4% of patients who were administered 30% FiO₂ and 14.9 % of patients in the 80%-FiO₂-administered group.¹⁸ In Grief et al, study, 500 patients undergoing

elective colorectal surgeries of which 250 received 80% oxygen and 250 received 30% oxygen noticed that the study group who received 80% oxygen had 13 surgical wound infections, as compared with 28 of the 250 patients receiving 30% oxygen.¹⁹ Al Niaimi et al, observed that supplemental perioperative oxygenation resulted in a reduced incidence of SSI in a fixed effects model and found to be beneficial in preventing SSI in patients undergoing colorectal surgery.²⁰

In a study of colorectal surgeries SSI was recorded in 2 patients (2 of 40, 5%) in the hyperoxygenation group (FiO₂ 80%) and 6 patients (6 of 40, 15%) in the control group (FiO₂ 30%). Time of hospitalization days in the hyperoxygenation group was also significantly decreased.¹⁰

In colorectal surgeries, tissue oxygen levels are low at the anastomosis site and the skin. Therefore, hyper-oxygenation can increase the tissue oxygen level and the number of oxygen free radicals at those sites and has a protective effect on anastomosis leakage. ^{21,22}

In this study also, there are five patients in the hyperoxygenation group were suffered with SSI with less asepsis score compared to control group in which 11 members were infected with moderate asepsis score which is significant. Postoperative hospitalization was significantly decreased in hyperoxygenation group. Our results were in accordance to the above studies. In some other studies, hyperoxygenation had no effect on the SSI rate for gastrointestinal (GI) and ovarian surgeries.^{23,24}

CONCLUSION

Increased intra-operative FIO₂ was associated with a reduction in surgical site infection. It also decreases the duration of hospital stay and decreases economic burden.

ACKNOWLEDGEMENTS

Authors would like to thanks the immense help received from Mamata medical college, the scholars whose articles are cited and included in references of this manuscript. The authors are also grateful to authors/editors/publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guidelines for prevention of surgical site infection. Infect Control Hosp Epidemiol. 1999;20(4):247-78.
- 2. Bratzler DW, Hunt DR. The surgical infection prevention and surgical care improvement projects:

- national initiatives to improve outcomes for patients having surgery. Clin Infect Dis. 2006;43(3):322-30.
- 3. Lewis RT. Oral versus systemic antibiotic prophylaxis in elective colonsurgery: a randomized study and meta-analysis send a message from the 1990s. Can J Surg. 2002;45(3):173-80.
- Titlestad I, Ebbesen LS, Ainsworth AP, Lillevang ST, Qvist N, Georgsen J. Leukocyte depletion of blood components does not significantly reduce the risk of infectious complications. Results of a double-blinded, randomized study. Int J Colorectal Dis. 2001;16(3):147-53.
- Pineda CE, Shelton AA, Hernandez-Boussard T, Morton JM, Welton ML. Mechanical bowel preparation in intestinal surgery: a metaanalysis and review of the literature. J Gastrointest Surg. 2008;12(11):2037-44.
- 6. Weber WP, Zwahlen M, Reck S, Feder-Mengus C, Misteli H, Rosenthal R, et al. Economic burden of surgical site infections at a European university hospital. Infect Control Hosp Epidemiol. 2008;29(7):623-9.
- 7. Hopf HW, Hunt TK, West JM, Blomquist P, Goodson WH III, Jenson A et al. Wound tissue oxygen predicts the risk of wound infection in surgical patients. Arch Surg. 1997;132(9):997-1004.
- 8. Gottrup F. Measurement and evaluation of tissue perfusion in surgery. In: Leaper DJ, Branicki FJ (eds) International surgical practice Oxford. UK: Oxford University Press; 1992:15-39.
- Alvandipour M, Mokhtari-Esbuie F, Baradari AG, Firouzian A, Rezaie M. Effect of Hyperoxygenation During Surgery on Surgical Site Infection in Colorectal Surgery. Ann Coloproctol. 2019;35(1):9-14
- Scott RD. The direct medical costs of healthcareassociated infections in US hospitals and the benefits of prevention. Atlanta (GA): Division of Healthcare Quality Promotion National Center for Preparedness, Detection, and Control of Infectious Diseases, Centers for Disease Control Prevention. 2009:401-7.
- 11. Pryor KO, Fahey TJ 3rd, Lien CA, Goldstein PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA. 2004;291(1):79-87.
- 12. Jonsson K, Jensen JA, Goodson WH 3rd, Scheuenstuhl H, West J, Hopf HW, et al. Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients. Ann Surg. 1991;214(5):605-13.
- 13. Jonsson K, Hunt TK, Mathes SJ. Oxygen as an isolated variable influences resistance to infection. Ann Surg. 1988;208(6):783-7.

- 14. Horikoshi T, Balin AK, Carter DM. Effect of oxygen on the growth of human epidermal keratinocytes. J Invest Dermatol. 1986;86(4):424-7.
- 15. Dimitrijevich SD, Paranjape S, Wilson JR. Effect of hyperbaric oxygen on human skin cells in culture and in human dermal and skin equivalents. Wound Repair Regen. 1999;7(1):53-64.
- 16. André Lévigne D, Modarressi A, Pignel R, Bochaton Piallat ML, Pittet Cuénod B. Hyperbaric oxygen therapy promotes wound repair in ischemic and hyperglycemic conditions, increasing tissue perfusion and collagen deposition. Wound Repair Regen. 2016;24(6):954-65.
- 17. Hopf HW, Hunt TK, West JM, Blomquist P, Goodson WH, Jensen JA et al. Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg. 1997;132(9):997-1004.
- 18. Belda FJ, Aguilera L, García de la Asunción J, Alberti J, Vicente R, Ferrándiz L, et al. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA. 2005;294(16):2035-42.
- Greif R, Akca O, Horn EP, Kurz A, Daniel IS. Supplemental perioperative oxygen to reduce the incidence of surgical wound infection. N Engl J Med. 2000;342(3):161-77.
- 20. Al-Niaimi A. Supplemental perioperative oxygen for reducing surgical site infection: a meta-analysis. J Eval Clin Pract. 2009;15(2):360-5.
- 21. Schietroma M, Carlei F, Cecilia EM, Piccione F, Bianchi Z, Amicucci G. Colorectal Infraperitoneal anastomosis: the effects of perioperative supplemental oxygen administration on the anastomotic dehiscence. J Gastrointest Surg. 2012;16(2):427-34.
- 22. Turan A, Apfel CC, Kumpch M, Danzeisen O, Eberhart LH, Forst H, et al. Does the efficacy of supplemental oxygen for the prevention of postoperative nausea and vomiting depend on the measured outcome, observational period or site of surgery? Anaesthesia. 2006;61:628(7)-33.
- 23. Pryor KO, Fahey TJ 3rd, Lien CA, Goldstein PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA. 2004;291(1):79-87.
- 24. Wanta BT, Hanson KT, Hyder JA, Stewart TM, Curry TB, Berbari EF, et al. Intra-operative inspired fraction of oxygen and the risk of surgical site infections in patients with type 1 surgical incisions. Surgical infections. 2018;19(4):403-9.

Cite this article as: Rao SSG, Suggala KK. Role of hyperoxygenation on surgical site wound infection: a randomised case control study. Int Surg J 2019:6:2927-30.