pISSN 2349-3305 | eISSN 2349-2902

## **Original Research Article**

DOI: http://dx.doi.org/10.18203/2349-2902.isj20192940

# Bariatric surgery between encouragement and inhibition: Sohag experience of first 50 cases with encouraging results

## Hosam F. Abdelhameed\*, Samir A. Abdelmageed, AsemElsani M. A. Hassan, Alaa A. Radwan

Department of General Surgery, Faculty of Medicine, Sohag University, Egypt

Received: 07 May 2019 Revised: 12 June 2019 Accepted: 13 June 2019

#### \*Correspondence:

Dr. Hosam F. Abdelhameed, E-mail: hsrogy@yahoo.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **ABSTRACT**

**Background:** The advantages of bariatric surgery are improved co-morbidity, quality of life and survival in obese patients. Nowadays, many studies compare effectiveness of different bariatric surgery procedures. Our aim is to evaluate effectiveness of two laparoscopic bariatric surgery procedures performed in our centre (SG and OAGB) as regard outcome and post- operative complications.

**Methods:** A retrospective study for our first 50 cases of bariatric surgery. Primary outcome was weight loss expressed as kilograms, body mass index (BMI) reduction and percentage excess weight loss % EWL. Secondary outcomes were remission or control of associated diabetes mellitus type 2, hypertension and dyslipidaemia.

**Results:** LSG was done in 38 cases and OAGB in 12 cases. Mean operating time for LSG was 75.6±10.5 min and for OAGB was 98.5±11.5 min. Mean length of hospitalization for LSG was 3.7±1.4 days and for OAGB was 5.2±1.6 days. Post-operative complication occurred in one patient (2.6%) with LSG and in two patients (16.6%) with OAGB. No significant statistical differences were found as regard short term complications or death. Mean EWL at 6 months was higher in patients receiving OAGB (59%) compared to those receiving LSG (47%). After 1 year it was (73% vs. 62%) and at 1.5 years (87% vs. 76%), respectively. At 6 months, associated comorbidities showed significant improvement in both groups but more with OAGB.

**Conclusions:** For the short term, OAGB appears to achieve better %EWL and remission of obesity-associated comorbidities compared with the LSG.

Keywords: Bariatric surgery, Sleeve gastrectomy, Mini gastric bypass, %EWL

### **INTRODUCTION**

Obesity is a major health problem of pandemic proportions. Recent studies show that 13% of the world's adult population were categorized as obese in 2014. The increased risk of premature death up to 50-100% was observed in people with morbid obesity or BMI  $\geq$  30 compared to individuals of healthy weight. Nowadays Bariatric surgery has been proved to be the most valid and durable treatment for morbid obesity. It leads to significant weight loss and prevents or improves a lot of

obesity-related diseases including type 2 diabetes, hypertension and hyperlipidaemia. 4,5

Researches show that bariatric surgery reduces the risk of premature death by 30-40%. <sup>6,7</sup> Nowadays most weight loss surgeries are performed using laparoscopic surgery. The most common bariatric surgery procedures are sleeve gastrectomy, RYGB and OAGB but the adjustable gastric band, and bilio-pancreatic diversion with duodenal switch are less common bariatric procedures. Each of these bariatric surgery procedures has its own advantages and disadvantages. <sup>8</sup> A significant improvements in bariatric

surgery safety, was observed in recent clinical studies, the risk of death is 0.1%, and the overall likelihood major complications is about 4%. 9,10 In this study we tried to compare the effectiveness of two laparoscopic bariatric procedures, one anastomosis gastric bypass OAGB and sleeve gastrectomy SG, performed in our centre as regard weight loss and to evaluate rates of post-operative morbidity and mortality.

#### **METHODS**

From November 2015 to March 2017, this is single institution retrospective study done in general surgery department, Sohag university hospital, Egypt included fifty patients presented to bariatric surgery clinic. Their age ranged from 20 to 58 years. Inclusion criteria include both genders with failed weight loss attempts in the past and good motivation for surgery, BMI 40 kg/m<sup>2</sup> or more with or without coexisting medical problems or a BMI 35 kg/m<sup>2</sup> or more with one or more obesity-related comorbidities. Exclusion criteria were; age less than 18 and more than 65 years, previous major gastrointestinal surgery, pregnancy, known malignant diseases, renal insufficiency, major psychiatric disorders and chronic liver disease. All patients were subjected to detailed history and clinical examination; routine labs, total cholesterol, and low-density lipoprotein (LDL) mineral and vitamins screening such as iron, ferritin, calcium, vitamin B12, cardiopulmonary evaluation with plain x ray chest, abdominal ultrasound, echocardiography, gastro-intestinal evaluation (upper GI series or upper endoscopy if clinically indicated) Endocrine evaluation (fasting blood sugar, HbA1c, TSH, 24- hour serum cortisone level).

Ethical committee approval for the study was obtained. All patients have been informed that they will be participating in a research. Informed consent was signed by all patients after full explanation of the surgical procedure and possible benefits and side effects. The surgical options in our centre were laparoscopic sleeve gastrectomy done in 38 cases and laparoscopic mini gastric bypass (single anastomosis) done in 12 cases. In sleeve gastrectomy (LSG), the greater omentum was divided by a harmonic scalpel starting from the greater curvature close to the stomach wall, starting 4cm from the pylorus. The greater curve was completely dissected till the angle of His was delineated and mobilized. The sleeve of the stomach was created using a linear stapler starting distally towards the angle of his over a 36 Fr gastric tube. Leakage is tested using methylene blue test. The specimen of the stomach was removed and a passive drainage was placed close to the suture. The drain was removed on the 2nd post-operative day.

In mini gastric bypass, a long gastric pouch about 2 cm width is created from the antrum distal to the crow foot

all the way to esophagogastric junction. Counting of two meters biliary limb from the ligament of Trietz then antecolic antegastric side-to-side gastro-jejunostomy was constructed by linear stabler 45 mm. The remaining opening was closed by Hand-sewn technique using non-absorbable sutures. Antireflux suture was performed for all patients to minimize the biliary reflux. A passive drainage was placed close to the gastrojejunostomy. The drainage was removed on the 4th postoperative day. The study variables included operative time, intraoperative bleeding, leakage, and wound infection, length of hospital stay and mortality rates. Primary outcome was weight loss expressed as kilograms lost, body mass index (BMI) reduction, (%TWL), and percentage excess weight loss (%EWL).

Continuous variables were presented as means and standard deviation, while categorical variables were expressed as percentages. A p<0.05 was considered statistically significant. All statistical tests were performed using IBM SPSS Statistics for Windows, Armonk, NY: IBM Corp, Version 20.

#### **RESULTS**

In period from November 2015 to March 2017, fifty patients (8 male/42 female) met our inclusion criteria. Laparoscopic sleeve gastrectomy was done in 38 cases (Figure 1 A-D).

Laparoscopic mini- gastric bypass (single anastomosis) was done in 12 cases (Figure 2 A-D).

The mean age was 32±12 years for LSG and 30±16 for OAGB, the mean weight was 144.4±34.4 in LSG and 140±34 in OAGB, BMI was 40.4±12.2 for LSG and 42±13.6 for OAGB associated comorbidities observed as hypertension in 6 and 7 cases, diabetes in 12 and 11 cases and hyperlipidemia in14 and10 cases respectively (Table 1). The mean operating time for LSG was 75.6±10.2 min and for OAGB was 98.5±11.5 min (p<0.01). Mean length of hospitalization for LSG was 3.7±1.4 days and for OSGB were 5.2±1.6 days (p<0.01) with follow up of vital signs of the patient. Enteral feeding in form of fluids started 24 post-operatives and continued for one week then 2 weeks soft diet then start solid diet.

Post-operative complication occurred early (within 30 postoperative days) in 3 patients, one (2.6%) in LSG group and 2 (16.6%) in OAGB group in the form of deep venous thrombosis in lower limp. All treated by only conservative measures. No significant statistical differences were found as regard short term complications (leakage, bleeding, and wound infection) between the two groups of patients. Late (more than 30 post-operative days) one patient died from pulmonary embolism in LSG group.









Figure 1 (A-D): Laparoscopic gastrectomy.









Figure 2 (A-D): Laparoscopic mini- gastric bypass.

Table 1: Demographic data of the study population.

| Parameters               | LSG (n=38) | OAGB (n=12) |
|--------------------------|------------|-------------|
| Gender (f/m)             | 32/6       | 10/2        |
| Age (years) mean         | 32±12      | 30±16       |
| Body weight(kg)          | 144.4±34.5 | 140±34      |
| BMI (kg/m <sup>2</sup> ) | 40.4±12.2  | 42±13.6     |
| Diabetes type 2          | 12         | 11          |
| Hypertension             | 6          | 7           |
| Hyperlipidemia           | 14         | 10          |

**Table 2: Post-operative outcome.** 

| Operative Data                     | LSG              | OAGB             | P value    |  |  |
|------------------------------------|------------------|------------------|------------|--|--|
| Operative time (mean ±SD)          | 75.6±10.2<br>min | 98.5±11.5<br>min | p<0.0012   |  |  |
| Hospital stay<br>(days)<br>mean±SD | 3.7±1.4          | 5.2±1.6<br>days  | p <.0001   |  |  |
| Conversion rate                    | 0                | 0                | 0.000 (NS) |  |  |
| Post-operative complications       |                  |                  |            |  |  |
| DVT                                | 1 (2.6%)         | 2 (16.6%)        | p<0.001    |  |  |
| Others                             | 0                | 0                | 0,000(NS)  |  |  |

NS =not significant,  $(p \le 0.05)$  = significant.

After one years, complete remission (normal glycemic control with no medical treatment for at least one year postoperatively) was observed in 75% (9/12 patients) and 90.9% (10/11) for LSG and OAGB respectively. Complete remission of hypertension was 66.6% (4/6 patients) and 71.4% (5/7 patients) for LG and OAGB respectively. Remission of hyperlipidemia was observed in 64.2% (9/14 patients) and 80% after LSG and OAGB respectively. There was statistical difference as regard BMI reduction, EWL% and TWL% during the follow up period as shown in Table 3.

Table 3: Postoperative BMI alterations and EWL% and TWL% (values expressed as mean).

|               | LSG           | OAGB      | P value  |  |  |
|---------------|---------------|-----------|----------|--|--|
| BMI reduction |               |           |          |  |  |
| 6 months      | $-8.1\pm4.1$  | -12.1±5.1 | < 0.0017 |  |  |
| 12 months     | $-10.2\pm4.1$ | -17.1±5.1 | < 0.0018 |  |  |
| 18 months     | $-18.3\pm3.2$ | -20.1±6.1 | < 0.009  |  |  |
| EWL% (mean)   |               |           |          |  |  |
| 6 months      | 47%           | 59%       | < 0.001  |  |  |
| 12 months     | 62%           | 73%       | < 0.001  |  |  |
| 18 months     | 76%           | 87%       | < 0.001  |  |  |
| %TWL          |               |           |          |  |  |
| 6 Months      | 20.6%         | 24.1%     | < 0.0016 |  |  |
| 12 Months     | 26.4%         | 29.5%     | < 0.0015 |  |  |
| 18 months     | 30.7%         | 33.9%     | < 0.007  |  |  |

(P≤0.05)=significant.

## DISCUSSION

Laparoscopic bariatric surgery has been performed 30 years ago and has quickly become more popular than open surgery due to its substantially lower risk of wound infection, incisional hernia, venous thromboembolism, and pulmonary complications. 11 A systematic review and meta-analysis for the common associated conditions (type II diabetes, hypertension & hyperlipidemia) has shown that effective weight loss and remission or improvement of comorbidities is achieved in obese patients after bariatric surgery. 12 Laparoscopic sleeve gastrectomy and gastric bypass (OAGB), are two common bariatric procedure done nowadays. The advantage of LSG over gastric bypass, in addition of being technically easier, is allowing endoscopic access to the upper alimentary canal, avoidance of intestinal anastomosis and dumping

syndrome.<sup>13</sup> Data available in the literature showed significant improvement of the results of bariatric procedures, showing that the risk of death is about 0.1% and the overall likelihood of major complications is about 4.3%. 14-17 In our study both groups showed no (0%) major complications (bleeding, leakage, obstruction, abscess formation or wound infection) only we reported 3 cases (6%) of DVT treated conservatively and one case(2.6%) died from pulmonary embolism in LSG patients so, our overall postoperative morbidity was similar after OAGB compared with LSG. Bariatric surgery helps to improve or cure many obesity-related diseases and conditions. <sup>18-20</sup> In our study, improvement of diabetes, hypertension and hyperlipidemia was observed early post-operative but after one years, Complete remission (normal glycemic control with no medical treatment for at least one year postoperatively) was observed in 75% (9/12 patients) and 90.9% (10/11) for LSG and OAGB respectively. This came in accordance to results of Carline et al who reported Remission rates for type 2 diabetes after LSG ranging between 60% and 80%, complete remission of hypertension was 66.6% (4/6 patients) and 71.4% (5/7 patients) for LSG and OAGB respectively.<sup>21</sup> Remission of hyperlipidemia was observed in 64.2% (9/14 patients) and 80% after LSG and OAGB respectively. Both LSG and OAGB have proved to be safe and effective bariatric procedures resulting in significant weight loss and favorable effects on comorbidities.<sup>22-25</sup> Clinical studies have demonstrated different results of EWL comparing OAGB and LSG with a wide range (fluctuating from 35% to 84%) at 1 year after surgery. 26-30 Many studies described that OAGB had better effectiveness than LSG in BMI decrease and EWL in the first year (p<0.05), whereas there was no significant difference after 1 year (p>0.05) (31-35) In this study, the mean EWL at 6 months was higher in patients receiving OAGB (59%) compared to those receiving LSG (47%) (p<0.001). After 1 year it was (73% vs. 62%; p<0.001) and at 1.5 years (87% vs. 76%; p<0.001), respectively. Total weight loss (TWL) was also significantly higher with OAGB compared with LSG (24.1% vs. 20.6%) after 6 months, (29.5% vs. 26.4%) after 12 months and (33.9% vs.30.7%) after 18 months. Other several randomized studies reported a range from 69% to 76% excess body weight loss at 12 months for LSG (36-37) and 67% to 68% at 36 months(38-40). The length of hospital stay was equivalent between groups (2 days).

## **CONCLUSION**

For the short term, OAGB appears to achieve better encouraging results of weight reduction and management of obesity-associated-morbid conditions compared with the LSG and a Sohag program seems to give promising results. A prospective study with long time follow-up is needed to assess the impact of these two surgical procedures on the long-term weigh loss beyond the period of follow up.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

#### **REFERENCES**

- Angrisani L, A. Santonicola P. Iovino G. Formisano H. Buchwald and N. Scopinaro:Bariatric Surgery Worldwide 2013. Obesity Surg. 2015;10:1822-32.
- 2. Kinlen D, Cody D, O'Shea D. Complications of obesity. Int J Med. 2018;111(7):437–43.
- 3. Lee WJ, Almalk O. Recent advancements in bariatric/metabolic surgery. Ann Gastroenterol Surg. 2017;1:171–9.
- Milone M, Di Minno MN, Leongito M, Maietta P, Bianco P, Taffuri C, et al. Bariatric surgery and diabetes remission: Sleeve gastrectomy or minigastric bypass? World J Gastroenterol. 2013;19(39):6590-7.
- 5. Cho YM. A Gut Feeling to Cure Diabetes: Potential Mechanisms of Diabetes Remission after Bariatric Surgery. Diabetes Metab J. 2014;38:406-415.
- Johnson RJ, Johnson BL, Blackhurst DW, Bour ES, Cobb WS 4th, Carbonell AM 2nd, et al. Bariatric surgery is associated with a reduced risk of mortality in morbidly obese patients with a history of major cardiovascular events. Am Surg. 2012;78(6):685-92.
- 7. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. 2007;357(8):753-61.
- 8. Cottam D, Qureshi FG, Mattar SG, Sharma S, Holover S, Bonanomi G, et al. Laparoscopic sleeve gastrectomy as an initial weight-loss procedure for high-risk patients with morbid obesity. Surg Endosc 2006;20:859-63.
- 9. Young MT, Gebhart A, Phelan MJ, Nguyen NT. Use and outcomes of laparoscopic sleeve gastrectomy vs laparoscopic gastric bypass:analysis of the American College of Surgeons NSQIP. J Am Coll Surg. 2015;220:880-5.
- Rasera I Jr, Luque A, Junqueira SM Jr, Brasil NC, Andrade PC. Effectiveness and Safety of Bariatric Surgery in the Public Healthcare System in Brazil: Real-World Evidence from a High-Volume Obesity Surgery Center. Obes Surg. 2016;3:214-9.
- 11. Buchwald H, Oien D. Metabolic/Bariatric Surgery Worldwide 2011. Obes Surg. 2013;23:427-36.
- 12. Chang SH, Stoll CRT, Song J, Varela JE, Eagon CJ, Colditz GA. Bariatric surgery:an updated systematic review and meta-analysis, 2003–2012. JAMA Surg. 2014;149(3):275–87.
- 13. Paluszkiewicz R, Kalinowski P, Wroblewski T, Bartoszewicz Z, Białobrzeska-Paluszkiewicz J, Ziarkiewicz-Wróblewska B, et al. Prospective randomized clinical trial of laparoscopic sleeve gastrectomy versus open Roux-en-Y gastric bypass for the management of patients with morbid obesity.

- Wideochir Inne Tech Malo Inwazyjne. 2012;7:225-32.
- 14. Ferrer-Marquez M, Belda-Lozano R, Ferrer-Ayza M. Technical controversies in laparoscopic sleeve gastrectomy. Obes Surg. 2012;22:182-7.
- Kokkinos A, Alexiadou K, Liaskos C, Argyrakopoulou G, Balla I, Tentolouris N, et al. Improvement in Cardiovascular Indices After Rouxen-Y Gastric Bypass or Sleeve Gastrectomy for Morbid Obesity. Obesity Surg. 2013;23(1):31-8.
- Chikunguw S, Dodson PW, Meador JG, Wolfe LG, Baugh N, Kellum JM, et al. Durable resolution of diabetes after roux-en-y gastric bypass associated with maintenance of weight loss. Surg Obes Related Dis. 2009;5(3):123-9.
- 17. Kaplan LM. Body weight regulation and obesity. J Gastrointestinal Surg. 2003;7(4):443-51.
- 18. Adams D, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC, et al. Health benefits of gastric bypass surgery after 6 years, JAMA. 2012;308(11):1122-31.
- Rawlins L, Rawlins MP, Brown CC, Schumacher DL. Sleeve gastrectomy: 5-year outcomes of a single institution. Surg Obes Relat Dis. 2013;9:21-5.
- 20. Fried M, Yumuk V, Oppert JM, Scopinaro N, Torres A, Weiner R, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Surg. 2014;24:42-55.
- 21. Carlin AM, Zeni TM, English WJ, Hawasli AA, Genaw JA, Krause KR, et al. The comparative effectiveness of sleeve gastrectomy, gastric bypass, and adjustable gastric banding procedures for the treatment of morbid obesity. Ann Surg. 2013;257:791-7.
- 22. Hutter MM, Schirmer BD, Jones DB, Ko CY, Cohen ME, Merkow RP, et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg. 2011;254:410-20.

- 23. Menenakos E, Stamou KM, Albanopoulos K, Papailiou J, Theodorou D, Leandros E. Laparoscopic sleeve gastrectomy performed with intent to treat morbid obesity:a prospective single-center study of 261 patient with a median follow-up of 1 year. Obes Surg. 2010;20:276-82.
- 24. Rice RD, Simon TE, Seery JM. Laparoscopic sleeve gastrectomy:outcomes at a military training center. Am Surg. 2010;76:835-40.
- Trastulli S, Desiderio J, Guarino S, Cirocchi R, Scalercio V, Noya G, et al. Laparoscopic sleeve gastrectomy compared with other bariatric surgical procedures:a systematic review of randomized trials. Surg Obes Relat Dis. 2013;9:816-29.
- Gagner M, Deitel M, Erickson AL, Crosby RD. Survey on laparoscopic sleeve gastrectomy (LSG) at the Fourth International Consensus Summit on Sleeve Gastrectomy. Obes Surg. 2013;23:2013-7.
- 27. Kehagias A. Zygomalas, D. Karavias, S. Karananakos: Sleeve gastrectomy:have we finally found the holy grail of bariatric surgery? A review of the literature. Eur Rev Med Pharmacological Sci. 2016;20:493-4.
- 28. Lee WJ, Chong K, Ser KH, Lee YC, Chen SC, Chen JC, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus:a randomized controlled trial. Arch Surg. 2011;146:143-8.
- 29. Deitel M, Hargroder D, Peraglie C. Mini-Gastric Bypass for Bariatric Surgery Increasing Worldwide Austin J Surg. 2016;3.
- Rutledgeab R, Kulara K, Manchandaa N. The Mini-Gastric Bypass original technique. Int J Surg. 2019;61:38-41.

Cite this article as: Abdelhameed HF, Abdelmageed SA, Hassan AMA, Radwan AA. Bariatric surgery between encouragement and inhibition: Sohag experience of first 50 cases with encouraging results. Int Surg J 2019;6:2234-8.