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INTRODUCTION 

Neuronavigation has become a ubiquitous tool in the 

surgical management of brain tumors.1 Neuronavigation 

provides intraoperative orientation to the surgeon and 

helps in planning a precise surgical approach to the 

targeted lesion and defines the surrounding neurovascular 

structures. There are many important applications of 

neuronavigation in the fields of functional, vascular and 

spinal neurosurgery. Neuronavigation is most useful as an 

adjunct to other brain-mapping techniques such as awake 

mapping and electrocorticography in the resection of 

lesions within eloquent motor and language areas.  

Neuronavigation is also commonly used in skull base 

tumors, especially for planning an operative trajectory in 

regions containing vital neurovascular structures and may 

be used for cerebrovascular surgery.2 
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The ability to pinpoint tumors and other nonneoplastic 

surgical targets was standardized and became 

increasingly precise as the stereotactic coordination 

system and headframe emerged through the work of 

Leksell and Spiegel.3,4 The logistical challenges of frame-

based stereotactic navigation were dramatically reduced 

as frameless navigation systems emerged. The need for a 

reliable means of accessing deep brain lesions with high 

accuracy has been recognized within neurosurgery since 

the early 1900s. The earliest neuronavigational systems 

relied on an arc-centered stereotactic frame system in 

which points of interest in the surgical field could be 

correlated with points in the imaging data set.5 

The components of frameless stereotactic navigation 

systems include a computer-based image processing 

module, a reference frame and a pointer that is 

recognized by an optical or electromagnetic detector. The 

basic arrangement for frameless stereotactic navigation 

relies on the spatial registration of anatomic landmarks in 

the operative environment to identical landmarks in a 3D 

model based on a reconstruction of cross-sectional 

imaging studies. The spatial coordinates of anatomic 

landmarks that are established through the use of a 

tracking system that pairs an optical or electromagnetic 

detector with a complimentary probe. The most-widely 

used tracking systems utilize dual infrared cameras that 

track the position of a probe relative to a fixed reference 

frame. The main limitation of infrared-based systems is 

the need for maintaining a direct line of sight between the 

camera, the reference frame and the probe during 

navigation.6 

Detailed clinical studies suggest that frameless 

stereotactic navigation can achieve positional accuracy 

comparable with that of frame-based stereotaxy. 

Electrode-based studies using pre- and post-operative 

MRI suggested that modern frameless methods for 

localization yield positional accuracy within 2–3 mm 

during surgery, which is equivalent to the accuracy of 

frame-based stereotaxy. The error inherent in frameless 

stereotactic navigation systems relates to the accuracy of 

probe tracking as well as the quality of preoperative 

images and the method of image-to-patient registration. 

Clinical factors that cause shift of the brain or a lesion, 

such as cerebrospinal fluid loss, cyst decompression and 

cerebral edema or sag, may also diminish navigational 

accuracy.7 

Senftet al reported a trial with 58 high-grade glioma 

patients undergoing neuronavigation and demonstrated 

radiographically complete resection (68%).8 A larger 

study of 40 patients undergoing pituitary surgery with the 

guidance of intraoperative neuronavigation found a 

higher rate of gross total resection (82.5%).9 Martin et al 

showed complete resection of the tumor mass with the aid 

of neuronavigation in 18 patients (72%).10 

The rationale behind carrying out current study was to 

determine the extent of resection in intra-axial brain 

tumors with the help of neuronavigation at present centre.  

Many recent papers have reported that the degree of 

resection of gliomas correlates with both progression-free 

and overall survival. The current study will show the 

effectiveness of neuronavigation and if found efficient 

will be the treatment of first choice in all patients who are 

having intra-axial brain tumor. 

METHODS 

This study was carried out in the Department of 

Neurosurgery, Nishtar Medical College and Hospital, 

Multan, Pakistan from September 2014 to March 2015 

after approval of synopsis by Institutional Ethical Review 

Board. 

Sample size of 78 patients is calculated with 95% 

confidence level, 10% margin of error and taking 

anticipated population proportion 72% for this cross-

sectional study. 

Inclusion criteria  

• Age 12 years to 60 years 

• Both sexes 

• Intra-axial brain lesion diagnosed on Magnetic 

Resonance Imaging (lies within brain parenchyma). 

Exclusion criteria 

Extensively vascular lesion, intraventricular lesion and 

calcified lesions diagnosed on Computed Tomography 

and Magnetic Resonance Imaging. 

Data collection  

After approval from local ethical committee, patients 

fulfilling the inclusion criteria were selected from the 

patient admitted in the Neurosurgical Department through 

the Out-Patient Department and patients referred from 

other departments.  

After thorough counseling with the patient and his/her 

relatives, informed consent for procedure was taken. On 

especially designed proforma, demographic profile was 

recorded on specially designed proforma. 

The procedure was comprised of four stages: image 

acquisition, registration, planning and intraoperative 

navigation. Image acquisition was done in the evening 

prior to the morning of resection and requires bony 

landmarks followed by MRI scan with 2mm slices from 

vertex to foramen magnum. These images were form a 

virtual cranium and were transferred to the intra-operative 

computer. Registration was done once the patient is 

positioned in the operating room and involves 

coordinating or co-registration of the virtual cranium 

derived from the preoperative imaging study, and the 

patient’s actual cranium in three-dimensional space of the 

operating room. Once these steps were completed, the 
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surgeon monitored the position of any point inside the 

brain in three-dimensions relative to the tumor or 

functional cortex with an accuracy of approximately 1-2 

mm. Whole procedure was carried out by the same 

consultant. Post-operative MRI brain within 48 hours was 

done to see gross total resection and data was recorded on 

specially designed proforma. 

Statistical analysis  

All the data were entered and analyzed using computer 

program SPSS-19. Frequencies were calculated for 

gender and gross total resection and stratification were 

undertaken on age, gender and gross total resection. 

Mean and standard deviation were presented for age. Chi-

Square test was applied. P<0.05 were taken as significant. 

RESULTS 

Total 78 patients were included in the study. Out of these 

78 (100%), 41 (52.6%) were male and 37 (47.4%) were 

female (Table 1).  

Table 1: Frequency of gender. 

Gender Frequency Percent 

Male 41 52.6 

Female 37 47.4 

Total 78 100.0 

Considering the age of patients, mean age of male 

patients was 33.12±13.5. Similarly, in female patients 

mean age was 32.5±11.9 (Table 2).  

Table 2: Mean age of the patients. 

Age 

Gender Mean Std. deviation 

Male 33.12 13.513 

Female 32.54 11.957 

Total 32.85 12.720 

Regarding the outcome variable (gross total resection), 

out of 78 (100%), in 61 (78.2%) patients gross total 

resection was present and gross total resection was absent 

in 17 (21.8%) patients (Table 3).  

Table 3: Frequency of gross total resection. 

Gross total resection Frequency Percent 

Yes 61 78.2 

No 17 21.8 

Total 78 100.0 

On cross tabulation, it was further clarified that in male 

patients’ gross total resection present in 32 patients and 

absent in 9 patients. Similarly, in female patients gross 

total resection present in 29 patients and absent in 8 

patients. P value was non-significant (Table 4).  

Table 4: Comparison of gender and gross               

total resection. 

Gender 
Gross total resection 

Total P-value 
Yes No 

Male 32 9 41 

1.00 Female 29 8 37 

Total 61 17 78 

Table 5: Comparison of age groups and gross        

total resection. 

Age 

groups 

Gross total resection 
Total P-value 

Yes No 

13-30  24 5 29 

0.747 
31-45  19 6 25 

46-60  18 6 24 

Total 61 17 78 

Among 78 patients, gross total resection was done in 61 

patients. There were 24 patients with gross total resection 

in the age group 13-30 years, 19 patients in age group 31-

45 years and 18 patients in age group 46-60. When 

authors compared the gross total resection among 

different age groups, an insignificant statistical 

association was observed (Table 5). 

DISCUSSION 

In the beginning, cranial neuronavigation was used for a 

better anatomical orientation. As neuronavigation bases 

on preoperative images, inaccuracies, commonly 

summarized as brain shift, may occur due to CSF loss 

and deformation of the brain anatomy by self-retaining 

retractors and tumor reduction. Brain shift can be 

minimized using appropriate surgical techniques 

described and refined by Kelly et al.11 Although this 

problem is overestimated in present opinion, other real 

time imaging techniques are brain shift independent. 

Therefore, intraoperative sonography, open MRI or 

mobile CT have the advantage over neuronavigation in 

this aspect. 

In present study, as concern to the outcome variable 

(gross total resection), out of 78 (100%), in 61 (78. %) 

patients gross total resection was present and gross total 

resection was absent in 17 (21.8%) patients. 

Nevertheless, these techniques do not solve two major 

problems of contemporary neurosurgery. First, they only 

offer anatomical information. For a functional 

preservation, intraoperative monitoring still is mandatory. 

To date, only motor cortex and speech area can be 

monitored by conventional cortical stimulation or SSEP's. 

Second, especially in low grade or recurrent gliomas, 

MRI or CT often are not capable to distinguish between 

tumor and edema, respectively gliosis. fMRI, MEG and 

PET may be the solution of these problems. As these 

techniques are available only preoperatively, they have to 

be integrated into cranial neuronavigation. Otherwise, 
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their information cannot be used reliably and comfortably 

during surgery. 

Meanwhile functional MRI is not only able to show the 

Brodmann areas 4, 44 and 45, but also many other 

functional brain areas like short-term memory or visual 

fields.12 With constantly improved paradigms, other 

complex cortical functions might be visualized in future. 

Especially the combination of different paradigms helps 

to detect and localize specific intellectual functions (K. 

Friston, London: Workshop Functional Imaging, Aachen, 

Germany 10/12/99). These areas cannot be monitored 

neither by electrophysiological, nor by intraoperative 

imaging techniques. Prior to the integration and 

monitoring of these complex cortical functions, it has to 

be proven, that fMRI indeed shows, what it intends to do. 

As fMRI bases on minimal differences in blood flow 

levels, its results might be interfered by many 

pathophysiological conditions. 

The BOLD effect diminishes, if arterial pCO2 increases, 

or if the parent vessel is stenotic. As T2* images are very 

sensitive for blood vessel, contralateral and postcentral 

co-activations may occur. Although it seems to be highly 

probable, that the motorcortex can be localized by fMRI, 

still no evidence exists. Recently two study groups in 

Aachen and Zürich reported their experiences of the 

correspondence between fMRI and cortical stimulation.13-

15 Like in present initial experiment, both groups matched 

their findings indirectly by comparing anatomical 

landmarks. Granslandt et al were the first to publish their 

experiences with a direct integration of functional images 

into cranial neuronavigation.16,17 They could show that 

the motor cortex localization of MEG (magnetic 

encephalography) and cortical SSEP corresponded well 

in all their 50 patients. The present study is the first report 

of direct integration of fMRI into neuronavigation. 

Although it includes only a few patients yet, fMRI seems 

to be highly reliable for the localization of the 

motorcortex and probably the Broca area as well. As 

mentioned above in low grade or recurrent gliomas, 

conventional imaging techniques like MRI or CT often 

are unable to distinguish between tumor and edema, 

respectively gliosis. The rapid progess of PET imaging 

during the last years seems to solve this problem. 

Primarily 18-FDG PET was used for this purpose.18-20 

Recently amino acids like 11C-methionine or methyl-11-

C-Thymidine were increasingly used with promising 

results.21-23 Especially the amino acid studies show, that 

PET seems to be superior to other imaging techniques to 

distinguish between tumoral and non-tumoral lesions. But 

comparable to fMRI studies, only one article is published 

so far, which aimed to prove these results 

intraoperatively. Levivier et al used 18-FDG PET 

information to target their stereotactic biopsy in patients 

with suspected intracranial tumoral lesion. They could 

show, that 6/35 (17 %) biopsies based on CT only were 

nondiagnostic. In contrast, all 55 biopsies defined on 

FDG-PET could be used. 

CONCLUSION 

Conclusion of current study is that neuronavigation is a 

useful technique for better gross total resection of intra 

axial brain tumors. 
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